LA HIDROSTATICA Y LA HIDRODINAMICA

Hidrostática

La hidrostática es la rama de la mecánica de fluidos que estudia los fluidos en estado de equilibrio, es decir, sin que existan fuerzas que alteren su movimiento o posición. Los principales teoremas que respaldan el estudio de la hidrostática son el principio de Pascal y el principio de Arquímedes.

Principio de Arquímedes

El principio de Arquímedes establece que cualquier cuerpo sólido que se encuentre sumergido total o parcialmente (depositado) en un fluido será empujado en dirección ascendente por una fuerza igual al peso del volumen del líquido desplazado por el cuerpo sólido.

El objeto no necesariamente ha de estar completamente sumergido en dicho fluido, ya que si el empuje que recibe es mayor que el peso aparente del objeto, éste flotará y estará sumergido sólo parcialmente.

Hidrodinámica

La hidrodinámica estudia la dinámica de fluidos incompresibles. Por extensión, dinámica de fluidos.

Etimológicamente, la hidrodinámica es la dinámica del agua, puesto que el prefijo griego “hidro-” significa “agua”. Aun así, también incluye el estudio de la dinámica de otros fluidos. Para ello se consideran entre otras cosas la velocidad, presión, flujo y gasto del fluido. Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio de presión, a diferencia de lo que ocurre con los gases.

Se considera despreciable la pérdida de energía por la viscosidad, ya que se supone que un líquido es óptimo para fluir y esta pérdida es mucho menor comparándola con la inercia de su movimiento.

Se supone que el flujo de los líquidos es en régimen estable o estacionario, es decir, que la velocidad del líquido en un punto es independiente del tiempo.

La hidrodinámica tiene numerosas aplicaciones industriales, como diseño de canales, construcción de puertos y presas, fabricación de barcos, turbinas, etc.

El gasto o caudal es una de las magnitudes principales en el estudio de la hidrodinámica. Se define como el volumen de líquido ΔV que fluye por unidad de tiempo Δt. Sus unidades en el Sistema Internacional son los m3/s y su expresión matemática:

Esta fórmula nos permite saber la cantidad de líquido que pasa por un conducto en cierto intervalo de tiempo o determinar el tiempo que tardará en pasar cierta cantidad de líquido.

El teorema de Bernoulli es una consecuencia de la conservación de la energía en los líquidos en movimiento. Establece que en un líquido incompresible y no viscoso, la suma de la presión hidrostática, la energía cinética por unidad de volumen y la energía potencial gravitatoria por unidad de volumen, es constante a lo largo de todo el circuito. Es decir, que dicha magnitud toma el mismo valor en cualquier par de puntos del circuito. Su expresión matemática es:

Donde P es la presión hidrostática, ρ la densidad, g la aceleración de la gravedad, h la altura del punto y v la velocidad del fluido en ese punto. Los subíndices 1 y 2 se refieren a los dos puntos del circuito.

La otra ecuación que cumplen los fluidos no compresibles es la ecuación de continuidad, que establece que el caudal es constante a lo largo de todo el circuito hidráulico:

G = A1v1 = A2v2

Donde A es el área de la sección del conducto por donde circula el fluido y v su velocidad media.

En el caso de fluidos compresibles, donde la ecuación de Bernouilli no es válida, es necesario utilizar la formulación más completa de Navier y Stokes. Estas ecuaciones son la expresión matemática de la conservación de masa y de cantidad de movimiento. Para fluidos compresibles pero no viscosos, también llamados fluidos coloidales, se reducen a las ecuaciones de Euler.

Daniel Bernoulli fue un matemático que realizó estudios de dinámica.

La hidrodinámica o fluidos en movimientos presentan varias características que pueden ser descritas por ecuaciones matemáticas muy sencillas.

Ley de Torricelli: Si en un recipiente que no está tapado se encuentra un fluido y se le abre al recipiente un orificio la velocidad con que caerá ese fluido será:

La otra ecuación matemática que describe a los fluidos en movimiento es el número de Reynolds:

Principio de Bernoulli

Para el teorema matemático enunciado por Jakob Bernoulli, véase Teorema de Bernoulli.

Esquema del Principio de Bernoulli.

El principio de Bernoulli, también denominado ecuación de Bernoulli o Trinomio de Bernoulli, describe el comportamiento de un fluido moviéndose a lo largo de una línea de corriente. Fue expuesto por Daniel Bernoulli en su obra Hidrodinámica (1738) y expresa que en un fluido ideal (sin viscosidad ni rozamiento) en régimen de circulación por un conducto cerrado, la energía que posee el fluido permanece constante a lo largo de su recorrido. La energía de un fluido en cualquier momento consta de tres componentes:

Cinética: es la energía debida a la velocidad que posea el fluido.

Potencial gravitacional: es la energía debido a la altitud que un fluido posea.

Energía de flujo: es la energía que un fluido contiene debido a la presión que posee.

La siguiente ecuación conocida como “Ecuación de Bernoulli” (Trinomio de Bernoulli) consta de estos mismos términos.

Dónde:

V = velocidad del fluido en la sección considerada.

g = aceleración gravitatoria

z = altura en la dirección de la gravedad desde una cota de referencia.

P = presión a lo largo de la línea de corriente.

ρ = densidad del fluido.

Para aplicar la ecuación se deben realizar los siguientes supuestos:

Viscosidad (fricción interna) = 0 Es decir, se considera que la línea de corriente sobre la cual se aplica se encuentra en una zona ‘no viscosa’ del fluido.

Caudal constante

Fluido incompresible, donde ρ es constante.

La ecuación se aplica a lo largo de una línea de corriente.

Aunque el nombre de la ecuación se debe a Bernoulli, la forma arriba expuesta fue presentada en primer lugar por Leonhard Euler.

Un ejemplo de aplicación del principio lo encontramos en el flujo de agua en tubería.

Características y consecuencias

Cada uno de los términos de esta ecuación tienen unidades de longitud, y a la vez representan formas distintas de energía; en hidráulica es común expresar la energía en términos de longitud, y se habla de altura o cabezal, esta última traducción del inglés head. Así en la ecuación de Bernoulli los términos suelen llamarse alturas o cabezales de velocidad, de presión y cabezal hidráulico, del inglés hydraulic head; el término z se suele agrupar con P / γ para dar lugar a la llamada altura piezométrica o también carga piezométrica.

También podemos reescribir este principio en forma de suma de presiones multiplicando toda la ecuación por γ, de esta forma el término relativo a la velocidad se llamará presión dinámica, los términos de presión y altura se agrupan en la presión estática.

Esquema del efecto Venturi.

O escrita de otra manera más sencilla:

q + p = p0

Donde

p = P + γz

p0 es una constante-

Igualmente podemos escribir la misma ecuación como la suma de la energía cinética, la energía de flujo y la energía potencial gravitatoria por unidad de masa:

Así el principio de bernouilli puede ser visto como otra forma de la ley de la conservación de la energía, es decir, en una línea de corriente cada tipo de energía puede subir o disminuir en virtud de la disminución o el aumento de las otras dos.

Esta ecuación permite explicar fenómenos como el efecto Venturi, ya que la aceleración de cualquier fluido en un camino equipotencial (con igual energía potencial) implicaría una disminución de la presión. Este efecto explica por qué las cosas ligeras muchas veces tienden a salirse de un automóvil en movimiento cuando se abren las ventanas. La presión del aire es menor fuera debido a que está en movimiento respecto a aquél que se encuentra dentro, donde la presión es necesariamente mayor. De forma, aparentemente, contradictoria el aire entra al vehículo pero esto ocurre por fenómenos de turbulencia y capa límite.

Ecuación de Bernoulli y la Primera Ley de la Termodinámica

De la primera ley de la termodinámica se puede concluir una ecuación estéticamente parecida a la ecuación de Bernouilli anteriormente señalada, pero conceptualmente distinta. La diferencia fundamental yace en los límites de funcionamiento y en la formulación de cada fórmula. La ecuación de Bernoulli es un balance de fuerzas sobre una partícula de fluido que se mueve a través de una línea de corriente, mientras que la primera ley de la termodinámica consiste en un balance de energía entre los límites de un volumen de control dado, por lo cual es más general ya que permite expresar los intercambios energéticos a lo largo de una corriente de fluido, como lo son las pérdidas por fricción que restan energía, y las bombas o ventiladores que suman energía al fluido. La forma general de esta, llamémosla, “forma energética de la ecuación de Bernoulli” es:

Dónde:

γ es el peso específico (γ = ρg).

W es una medida de la energía que se le suministra al fluido.

hf es una medida de la energía empleada en vencer las fuerzas de fricción a través del recorrido del fluido.

Los subíndices 1 y 2 indican si los valores están dados para el comienzo o el final del volumen de control respectivamente.

g = 9, 81 m/s2 y gc = 1 kg·m/ (N·s2)

Suposiciones [editar]

La ecuación arriba escrita es un derivado de la primera ley de la termodinámica para flujos de fluido con las siguientes características.

El fluido de trabajo, es decir, aquél que fluye y que estamos considerando, tiene una densidad constante.

No existe cambio de energía interna.

Demostración

Escribamos la primera ley de la termodinámica con un criterio de signos termodinámico conveniente:

Recordando la definición de la entalpía h = u + Pv, donde u es la energía interna y v se conoce como volumen específico v = 1 / ρ. Podemos escribir:

Que por las suposiciones declaradas más arriba se puede reescribir como:

Dividamos todo entre el término de la aceleración de gravedad

Los términos del lado izquierdo de la igualdad son relativos a los flujos de energía a través del volumen de control considerado, es decir, son las entradas y salidas de energía del fluido de trabajo en formas de trabajo (w) y calor (q). El término relativo al trabajo w / g consideraremos que entra al sistema, lo llamaremos h y tiene unidades de longitud, al igual que q / g, que llamaremos hf quién sale del sistema, ya que consideraremos que sólo se intercambia calor por vía de la fricción entre el fluido de trabajo y las paredes del conducto que lo contiene. Así la ecuación nos queda:

O como la escribimos originalmente:

Así, podemos observar que el principio de bernoulli es una consecuencia directa de la primera ley de la termodinámica, o si se quiere, otra forma de esta ley. En la primera ecuación presentada en este artículo el volumen de control se había reducido a tan solo una línea de corriente sobre la cual no habían intercambios de energía con el resto del sistema, de aquí la suposición de que el fluido debería ser ideal, es decir, sin viscosidad ni fricción interna, ya que no existe un término hf entre las distintas líneas de corriente.

Aplicaciones del Principio de Bernoulli [editar]

Airsoft

Las réplicas usadas en este juego suelen incluir un sistema llamado HopUp que provoca que la bola sea proyectada realizando un efecto circular, lo que aumenta el alcance efectivo de la réplica. Este efecto es conocido como efecto Magnus, la rotación de la bola provoca que la velocidad del flujo por encima de ella sea mayor que por debajo, y con ello la aparición de una diferencia de presiones que crea la fuerza sustentadora, que hace que la bola tarde más tiempo en caer.

Chimenea

Las chimeneas son altas para aprovechar que la velocidad del viento es más constante y elevada a mayores alturas. Cuanto más rápidamente sopla el viento sobre la boca de una chimenea, más baja es la presión y mayor es la diferencia de presión entre la base y la boca de la chimenea, en consecuencia, los gases de combustión se extraen mejor.

Tubería

La ecuación de Bernoulli y la ecuación de continuidad también nos dicen que si reducimos el área transversal de una tubería para que aumente la velocidad del fluido que pasa por ella, se reducirá la presión.

Natación

La aplicación dentro de este deporte se ve reflejada directamente cuando las manos del nadador cortan el agua generando una menor presión y mayor propulsión.

Sustentación de aviones

El efecto Bernoulli es también en parte el origen de la sustentación de los aviones. Gracias a la forma y orientación de los perfiles aerodinámicos, el ala es curva en su cara superior y está angulada respecto a las líneas de corriente incidentes. Por ello, las líneas de corriente arriba del ala están más juntas que abajo, por lo que la velocidad del aire es mayor y la presión es menor arriba del ala; al ser mayor la presión abajo del ala, se genera una fuerza neta hacia arriba llamada sustentación.

Movimiento de una pelota o balón con efecto

Si lanzamos una pelota o un balón con efecto, es decir rotando sobre sí mismo, se desvía hacia un lado. También por el conocido efecto Magnus, típico es el balón picado, cuando el jugador mete el empeine por debajo del balón causándole un efecto rotatorio de forma que este traza una trayectoria parabólica. Es lo que conocemos como vaselina.

Carburador de automóvil

En un carburador de automóvil, la presión del aire que pasa a través del cuerpo del carburador, disminuye cuando pasa por un estrangulamiento. Al disminuir la presión, la gasolina fluye, se vaporiza y se mezcla con la corriente de aire.

Flujo de fluido desde un tanque

La tasa de flujo está dada por la ecuación de Bernoulli.

Dispositivos de Venturi

En oxigenoterapia, la mayor parte de sistemas de suministro de débito alto utilizan disTeorema de Bernoulli

Para el comportamiento físico de un fluido, véase Principio de Bernoulli.

El Teorema de Bernoulli

Es un caso particular de la Ley de los grandes números, que precisa la aproximación frecuencial de un suceso a la probabilidad p de que este ocurra a medida que se va repitiendo el experimento.

Dados un suceso A, su probabilidad p de ocurrencia, y n pruebas independientes para determinar la ocurrencia o no-ocurrencia de A.

Sea f el número de veces que se presenta A en los n ensayos y  un número positivo cualquiera, la probabilidad de que la frecuencia relativa f/n discrepe de p en más de  (en valor absoluto) tiende a cero al tender n a infinito. Es decir:

Jakob Bernoulli

Categoría: Teoremas de probabilidad positivos de tipo Venturi, el cual está basado en el principio de Bernoulli.

Anuncios

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión /  Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión /  Cambiar )

w

Conectando a %s

A %d blogueros les gusta esto: